Acta Cryst. (1991). C47, 866-869

Structure of Aqua-hexakis(μ_2 -benzoato)-bis(methanol)- μ_3 -oxo-triiron(III) Benzoate Ethanol Methanol Solvate

BY VINCENT M. LYNCH, JOHN W. SIBERT, JONATHAN L. SESSLER AND BRIAN E. DAVIS Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 19 July 1990; accepted 27 September 1990)

Abstract. $[Fe_3(O)(C_7H_5O_2)_6(CH_3OH)_2(H_2O)]$ - $[C_7H_5O_2]-C_2H_5OH-CH_3OH (1/1/1), M_r = 1191.56,$ triclinic, PI, a = 11.591 (3), b = 13.308 (2), c = 20.154 (3) Å, $\alpha = 96.910$ (12), $\beta = 96.95$ (2), $\gamma = 114.10$ (2)°, V = 2767.1 (9) Å³, Z = 2, $D_x = 1.43$ g cm⁻³, $\mu = 8.471$ cm⁻¹, Mo K α radiation, $\lambda = 0.7107$ Å, F(000) = 1234, T = 198 K, R = 0.0522 for 6252 reflections $[F_o \ge 4\sigma(F_o)]$. The complex has nearly D_{3h} symmetry with two coordinated CH₃OH molecules and one coordinated H₂O molecule. The coordination around the Fe atoms is essentially octahedral. Each Fe atom lies slightly out of the plane of the O atoms of the bridging benzoates and is directed towards the μ_3 -O atom. The average Fe—O distances are 1.907 (2) Å for the μ_3 -O atom and 2.010 (1) Å for the benzoate O atoms.

Experimental. As a by-product of ongoing research related to the respiratory protein hemerythrin (Sessler, Sibert & Lynch, 1990; Sessler, Hugdahl, Lynch & Davis, 1990), complex (1), $[Fe_3(O)-(O_2CC_6H_5)_6(CH_3OH)_2(H_2O)][O_2CC_6H_5]-CH_3OH-C_2H_5OH$, was synthesized. Orange crystals were obtained by slow evaporation of a methanol-ethanol (5:1) solution. The crystals quickly decomposed when taken out of the mother liquor, presumably due to the loss of methanol and/or ethanol solvate molecules.

were collected on a Nicolet P3 diffractometer, using graphite-monochromatized Mo $K\alpha$ radiation, and a Nicolet LT-2 low-temperature delivery system. Lattice parameters were obtained from the least-squares refinement of 42 reflections with $24.4 < 2\theta < 30.0^{\circ}$. Data were collected using the ω -scan technique (10 318 reflections, 9788 unique, $R_{\text{int}} = 0.0134$), with a 2 θ range from 4.0–50° in 2 θ , over a 1.3° ω scan at $4-8^{\circ} \min^{-1} (h=0 \rightarrow 12, k=-15 \rightarrow 15, l=-23 \rightarrow 23),$ Four reflections $(2\overline{3}3; \overline{2}32; \overline{3}3\overline{2}; \overline{3}0\overline{1})$ were remeasured every 96 reflections to monitor instrument and crystal stability. A smoothed curve of the intensities of these four reflections was used to scale the data. The scaling factor ranged from 0.968-1.03. The data were also corrected for Lp effects and absorption. The absorption correction was based on crystal-face measurements with a minimium and maximum transmission factor range of 0.8291-0.9147. The data reduction, absorption and decay correction were performed using SHELXTL-Plus (Sheldrick, 1987). Reflections having $F_o < 4\sigma(F_o)$ were considered unobserved (3536 reflections). The structure was solved by the direct methods and refined by fullmatrix least squares (Sheldrick, 1987). The non-H atoms were refined with anisotropic thermal parameters. The H atoms were obtained from a ΔF map and refined with isotropic thermal parameters. During the latter stages of refinement, the H atoms of the methanol C atoms (C60, C62, C2B) and the C atoms of the ethanol molecule (C2A, C3A) were idealized (C-H 0.96 Å) with isotropic thermal parameters fixed at $1.2 \times U_{eq}$ of the relevant C atom. In all, a total of 858 paremeters were refined in blocks of 394 and 465 parameters with the scale factor being refined in each block. The function $\sum_{i} w(|F_o| - |F_c|)^2 \text{ was minimized, where } w = 1/[\sigma(F_o)]^2 \text{ and } \sigma(F_o) = 0.5kI^{-1/2} \{[\sigma(I)^2 + (0.02I)^2\}^{1/2}\}^{1/2}$ where w = 1/The intensity, I, is given by $(I_{\text{peak}} - I_{\text{background}}) \times$ (scan rate); 0.02 is a factor to downweight intense reflections and to account for instrument instability and k is the correction due to Lp effects, absorption and decay. $\sigma(I)$ was estimated from counting statistics; $\sigma(I) = [(I_{\text{peak}} + I_{\text{background}})^{1/2} \times (\text{scan rate})]$. Final R = 0.0522 for 6252 reflections, wR = 0.0533 ($R_{\text{all}} =$ 0.0863, $wR_{all} = 0.0583$) and a goodness of fit = 1.43. © 1991 International Union of Crystallography

Table 1. Fractional coordinates and equivalent isotropic thermal parameters $(Å^2)$ for the non-H atoms of (1)

> For anisotropic atoms, U is U_{eq} , where $U_{eq} = (1/3)\sum_{i}\sum_{j}U_{ij}a_{i}^{*}a_{j}^{*}\mathbf{a}_{i}\cdot\mathbf{a}_{j}$.

	X	y	2	0
Fel	-0.80124(7)	0.20168(6)	0.77919 (3)	0.0248 (3)
F-2	0 57204 (7)	0.14605 (6)	0.72108 (2)	0.0242 (3)
Fe2	-0.37390(7)	0.14095 (0)	0.72108 (3)	0.0242 (3)
Fe3	-0.36307(7)	0.40018(6)	0.73012(3)	0.0225 (3)
04	<i>−</i> 0·6468 (3)	0.2495 (2)	0.74382 (14)	0.0235 (13)
O5	-0.8872 (3)	0.2743 (3)	0.7218 (2)	0.034 (2)
C6	-0.8426(5)	0-3577 (4)	0.6932 (2)	0.030 (2)
07	-0.7254(3)	0.4115 (3)	0.6908(2)	0.036(2)
C ⁰	- 0.0242 (5)	0.3065 (4)	0.6580 (2)	0.020 (2)
Co	-0.9343 (3)	0.3303 (4)	0.0000000000000000000000000000000000000	0029(2)
C9	- 0.0626 (6)	0-3469 (5)	0.6625(3)	0.044(3)
C10	- 0.1474 (7)	0.3832 (7)	0.6309 (4)	0.071 (4)
CII	- 0.1025 (8)	0.4695 (7)	0.5957 (3)	0.069 (4)
C12	- 0.9755 (8)	0.5184 (6)	0.5916 (3)	0.056 (4)
CI3	-0.8910 (6)	0.4822 (5)	0.6227(3)	0.039 (3)
014	-0.7350(3)	0.3342 (3)	0.8557 (2)	0.033 (2)
C14	-0.6453 (5)	0.4312(4)	0.8655 (2)	0.026 (2)
CIS	-0.0433(3)	0.4312 (4)	0 00000 (2)	0 0 20 (2)
016	-0.5/3/(3)	0.4683(3)	0.8233(2)	0.037(2)
C17	-0.6205 (5)	0.5078 (4)	0.9311 (2)	0.026 (2)
C18	– 0·6950 (6)	0.4733 (5)	0.9797 (3)	0.045 (3)
C19	-0.6715(7)	0.5431 (6)	1.0406 (3)	0.055 (3)
C20	- 0.5732 (6)	0.6483 (5)	1.0545 (3)	0.045 (3)
C20	-0.4005 (7)	0.6827 (5)	1.0072 (3)	0.045 (3)
C21	- 0.4773 (7)	0.0027 (5)	0.0450 (3)	0.041 (3)
C22	-0.5230 (6)	0.6129 (5)	0.9439 (3)	0.041(3)
O23	-0.6045 (3)	0.0753 (3)	0.8029 (2)	0.036(2)
C24	−0·6767 (5)	0.0690 (4)	0.8444 (3)	0.028 (2)
O25	- 0·7499 (3)	0.1182 (3)	0.8461 (2)	0.039 (2)
C26	-0.6770(5)	-0.0016(4)	0.8974 (2)	0.030 (2)
C27	-0.6010(7)	-0.0579(5)	0.8973 (3)	0.055 (3)
C27	0 6059 (0)	- 0.1278 (7)	0.0438 (4)	0.077 (5)
C28	- 0.0038 (9)	- 0.1278 (7)	0.0007 (4)	0.0(0)(1)
C29	- 0.6834 (8)	-0.1387 (6)	0.9907 (4)	0.069 (4)
C30	– 0·7562 (7)	- 0.0802 (6)	0.9930(3)	0.026(3)
C31	- 0·7532 (6)	- 0·0103 (5)	0.9460 (3)	0.045 (3)
O32	-0.7422(3)	0.0292 (3)	0.6659 (2)	0.037 (2)
C33	-0.8574(5)	0.0099 (4)	0.6674 (3)	0.031(2)
034	-0.8952(3)	0.0602 (3)	0.7101(2)	0.040(2)
C25	-0.0577(5)	-0.0838(4)	0.6137(3)	0.038(2)
C35	0.0000 (7)	- 0.1462 (5)	0.5690 (2)	0.052 (2)
C36	-0.9230(7)	- 0.1463 (3)	0.5080 (3)	0.032(3)
C37	-0.0150 (8)	-0.2317(6)	0.51/0 (4)	0.066 (4)
C38	– 0·1419 (8)	- 0.2531 (7)	0.5145 (4)	0.080 (4)
C39	- 0.1793 (7)	– 0·1939 (6)	0.5633 (4)	0.074 (4)
C40	-0.0855 (6)	-0.1087(5)	0.6127 (3)	0.055 (3)
041	-0.5241(3)	0.1989(3)	0.6351 (2)	0.037 (2)
C42	-0.5197(5)	0.2805 (4)	0.6081(2)	0.028(2)
042	-0.5413(3)	0.3602 (3)	0.6347(2)	0.033(2)
043	- 0.9413 (3)	0.3032 (3)	0 6307 (2)	0 0 0 0 (2)
C44	-0.4841 (5)	0.2832 (4)	0.5392 (2)	0.030(2)
C45	-0.4722 (6)	0.1931 (5)	0.5046 (3)	0.044(3)
C46	-0.4396 (7)	0.1963 (6)	0.4406 (3)	0.061 (3)
C47	-0.4210 (7)	0.2893 (6)	0.4114 (3)	0.056 (3)
C48	-0.4306(6)	0.3798(6)	0.4462 (3)	0.050(3)
C49	-0.4636(5)	0.3764(5)	0.5092 (3)	0.037(3)
050	0 2045 (2)	0.2526 (2)	0.7723(2)	0.034(2)
050	-0.3343(3)	0.2596 (3)	0 7906 (2)	0.034 (2)
CSI	-0.3355 (5)	0.3386 (4)	0.7806 (2)	0.020 (2)
052	- 0-3856 (3)	0.4226(3)	0.7650 (2)	0.035 (2)
C53	- 0.1959 (5)	0.4119 (4)	0.8106 (3)	0.030 (2)
C54	- 0.1320 (6)	0.3483 (5)	0.8271 (3)	0.050 (3)
C55	-0.0008 (6)	0.3997 (6)	0.8541 (4)	0.065 (3)
C56	0.0636 (7)	0.5130 (6)	0.8657 (4)	0.064 (3)
C57	0.0020 (6)	0.5772 (5)	0.8491 (4)	0.059 (3)
C57	0.0023 (0)	0 5772 (5)	0 0 1 1 (7)	0.044(3)
C58	-0.1269 (5)	0.5270 (5)	0.8211 (3)	0.044(3)
059	-0.9675 (4)	0.1518(3)	0.8205 (2)	0.035 (2)
C60	-0-9739 (7)	0.1527 (5)	0.8920 (3)	0.064 (4)
O61	-0.4801 (4)	0.5649 (3)	0.7158 (2)	0.034 (2)
C62	-0.3536(6)	0.6264(5)	0.7041(4)	0.067 (3)
063	-0.4985(4)	0.0368 (3)	0.6949 (2)	0.034(2)
005	-0.5630 (4)	-0.2880(3)	0.7633(2)	0.060(2)
C1A C1A	- 0.3030 (4)	0 2000 (5)	0.7759 (4)	0.084 (4)
C2A	-0.0800 (8)	-0.2089 (0)	0.7738 (4)	0.004 (4)
C3A	-0.7570 (12)	- 0.2400 (9)	0.7339 (5)	0.164 (8)
01 <i>B</i>	- 0.2906 (4)	0.0863 (5)	0.6380 (3)	0.078 (3)
C2 <i>B</i>	-0.2384 (8)	0.0770 (7)	0.5799 (4)	0.090 (5)
01 <i>C</i>	-0.2011(4)	0.0339 (3)	0.7528 (2)	0.055 (2)
CZC	-0.2775 (6)	-0.0430(5)	0.7790 (3)	0.044 (3)
030	- 0.3960 (4)	- 0.0692 (3)	0.7739 (2)	0.048 (2)
CAC	-0.2185 (5)	- 0.1022 (4)	0.8213 (3)	0.038 (2)
C4C	- 0.2163 (3)	- 0.1033 (4)	0.0213 (3)	0.050 (2)
CSC .	-0.2/06 (6)	- 0.1449 (5)	0.8734 (3)	0.001 (3)
COC	- 0.2095 (7)	- 0.1939 (6)	0.9106 (4)	0.001 (4)
C7C	-0.1058 (7)	- 0.2061 (5)	0.9017 (4)	0.028 (3)
C8C	-0.0524 (6)	-0.1653 (5)	0.8463 (4)	0.053 (3)
C9C	-0.1082 (5)	-0.1120 (5)	0.8070 (3)	0.043 (3)

The maximum $|\Delta/\sigma| < 0.1$ in the final refinement cycle and the minimum and maximum peaks in the final ΔF map were -0.64 and $0.70 \text{ e } \text{Å}^{-3}$, respectively. Scattering factors for the non-H atoms were taken from Cromer & Mann (1968), with anomalous-dispersion corrections from the work of Cromer & Liberman (1970). The scattering factors

Fig. 1. View of (1) showing the atom-labelling scheme. Ellipsoids are scaled to the 30% probability level. Most H atoms are omitted for clarity.

Fig. 2. View of (1) looking down the pseudo-threefold axis of the complex. The benzoates bridge the Fe atoms. The water Fe—O bond [Fe2—O63 2.042 (5) Å] is slightly shorter than the methanol Fe—O bonds [Fe1—O59 2.080 (4), Fe3—O61 2.077 (4) Å].

Table 2. Bond lengths (Å) and angles (°) for the non-H atoms of (1)

Table 2 (cont.)

1	2	3	1-2	1-2-3
<u>.</u>	Ea1	0	1 800 (2)	
04	Fe1	05	1.998 (3)	90.80 (15)
04	Fel E-1	014		94.89 (13)
04	Fel	025		95.7 (2)
04	Fel	034		95.19 (14)
05	Fel	014	2.011 (4)	91.0 (2)
05	Fel	025		167.4 (2)
05	Fel	034		88·3 (2)
05	Fel	059		83.9 (2)
014	Fel	O25	2.008 (3)	87.5 (2)
D14	Fel	O34		169-9 (2)
D14	Fel	O59		83·71 (14)
D25	Fel	O34	2.029 (4)	91.0 (2)
D25	Fel	O59		83·5 (2)
D34	Fel	O59	1.999 (3)	86·2 (2)
059	Fel	04	2.080 (4)	178-43 (13)
04	Fe2	O23	1.915 (4)	96.1 (2)
04	Fe2	O32		92.84 (15)
04	Fe2	041		95·8 (2)
04 ·	Fe2	050		94.05 (14)
023	Fe2	032	1.999 (4)	91.55 (13)
023	Fe2	041	• • • • • • •	168.1 (2)
023	Fe2	050		88.70 (14)
023	Fe2	063		84.7 (2)
023	Fo2	005	2.012 (2)	80.00 (12)
032	Fe2	041	2.013 (3)	172.0 (1)
032	Fe2	0.0		1/3.0 (2)
032	Fe2	063	2.004 (4)	80.3 (2)
041	Fe2	030	2.004 (4)	89.32 (14)
041	rez	063	a 030 (3)	83.5 (2)
050	Fe2	063	2.030 (3)	86-8 (2)
063	Fe2	04	2.042 (5)	1/8.82 (14)
04	Fed	07	1.908 (3)	96.75 (14)
04	Fe3	016		94.40 (13)
04	Fe3	O43		95.65 (13)
04	Fe3	O52		✓ 95·80 (15)
07	Fe3	O16	2.002 (4)	90.1 (2)
07	Fe3	043		88.7 (2)
07	Fe3	O52		167.42 (14)
07	Fe3	O61		82.0 (2)
016	Fe3	O43	2.017 (4)	169·95 (14)
016	Fe3	O52		89.8 (2)
016	Fe3	O61		84.78 (15)
043	Fe3	O52	2.015 (3)	89.2 (2)
O43	Fe3	O61		85.17 (15)
O52	Fe3	O61	1.999 (4)	85.4 (2)
O61	Fe3	04	2.077 (4)	178.5 (2)
Fel	04	Fe2	()	120.4 (2)
Fel	04	Fe3		119.6 (2)
Fe2	04	Fe3		120.0(2)
C6	05	Fel	1.260 (6)	132.0 (3)
07	C6	68	1.261 (6)	116.8 (5)
07	Č	OS	1 201 (0)	125.0 (6)
C8	C6	05	1.403 (0)	118.3 (5)
Ee3	07	C6	1 475 (7)	133.3 (4)
0	Cé	C12	1.275 (9)	133.3 (4)
C9		C13	1.373 (8)	119.5 (6)
C9		6	1, 201 (0)	120.0 (3)
	C0	C0	1.301 (0)	120.2 (5)
	C10	0	1.363 (13)	120.5 (6)
		Cy Clo	1.376 (12)	119.3 (7)
			1.363 (11)	120.2 (9)
	C12	CII	1.3// (12)	120.5 (7)
C8	CIS	C12		120-1 (6)
CIS	014	Fel	1.256 (5)	133-4 (3)
016	CIS	CI/	1.263 (6)	117-3 (4)
016	C15	014		124.2 (4)
C17	C15	014	1.487 (7)	118.5 (4)
Fe3	O16	C15		133-1 (3)
C18	C17	C22	1.380 (8)	117.7 (5)
C18	C17	C15		120.7 (4)
C22	C17	C15	1.359 (7)	121.7 (5)
C19	C18	C17	1.372 (9)	120.9 (5)
C20	C19	C18	1.365 (8)	120.5 (6)
C21	C20	C19	1.353 (9)	118-9 (6)
C22	C21	C20	1.378 (8)	120.7 (5)
C17	C22	C21		121.3 (6)
C24	O23	Fe2	1.239 (7)	134.4 (4)
025	C24	C26	1.267 (8)	117-1 (5)
025	C24	O23		125.1 (5)
C26	C24	O23	1.505 (8)	117-8 (6)
Fel	O25	C24		131-3 (4)
C27	C26	C31	1.369 (11)	119-8 (6)
227	C26	C24		119.6 (5)
C31	C26	C24	1.380 (9)	120.6 (6)
228	C27	C26	1.389 (12)	119.9 (8)
229	C28	C27	1.361 (13)	120-3 (10)
/	010		(15)	

1	2	3	12	1-2-3
- C30	- C29	C28	1.362 (14)	120.5 (8)
CN	C30	C20	1.400 (10)	110.8 (7)
C26	C31	C30	1400(10)	119.6 (7)
C33	032	Ee?	1.258 (7)	132.6 (3)
034	C33	C35	1.255 (7)	117.9 (5)
034	C33	032	1 255 (7)	125.7 (4)
C35	C33	032	1.505 (6)	116.4 (5)
Fel	034	C33	1 505 (0)	131.9 (3)
C36	C35	C40	1.371 (10)	120.3 (5)
C36	C35	C33		120.7 (5)
C40	C35	C33	1.376 (9)	119.0 (6)
C37	C36	C35	1.395 (8)	121.1 (7)
C38	C37	C36	1.372(13)	118.3 (8)
C39	C38	C37	1.402(13)	121.2 (6)
C40	C39	C38	1.385 (8)	119-1 (8)
C35	C40	C39		119.9 (7)
C42	O41	Fe2	1.258 (7)	134.7 (4)
O43	C42	C44	1.260 (7)	117.8 (5)
043	C42	O41	(-)	125.3 (5)
C44	C42	O41	1.496 (7)	117.0 (5)
Fe3	O43	C42		130-1 (3)
C45	C44	C49	1.378 (9)	119-3 (5)
C45	C44	C42		120-3 (5)
C49	C44	C42	1.391 (9)	120.4 (5)
C46	C45	C44	1.388 (10)	119.9 (7)
C47	C46	C45	1.382(12)	119.8 (8)
C48	C47	C46	1.371 (12)	120.4 (7)
C49	C48	C47	1.369 (9)	119.8 (7)
C44	C49	C48	. ,	120.8 (7)
C51	O50	Fe2	1.259 (6)	130.6 (4)
O52	C51	C53	1.260 (8)	117.0 (4)
O52	C51	O50		125.0 (4)
C53	C51	O50	1.487 (7)	118.0 (5)
Fe3	O52	C51		134-3 (3)
C54	C53	C58	1.377 (10)	118.7 (5)
C54	C53	C51		121-1 (5)
C58	C53	C51	1.382 (7)	120.2 (6)
C55	C54	C53	1.392 (9)	120.2 (6)
C56	C55	C54	1.356 (10)	119-8 (8)
C57	C56	C55	1.355 (12)	120.9 (6)
C58	C57	C56	1.383 (8)	119-8 (6)
C53	C58	C57		120.5 (7)
C60	O59	Fel	1.450 (8)	126.2 (4)
C62	061	Fe3	1.424 (7)	128.3 (4)
C2A	01A		1.405 (11)	
C3A	C2A	01 <i>A</i>	1.69 (2)	114-1 (7)
C2B	O1B		1.396 (11)	
C2C	010		1.270 (7)	
030	C2C	C4C	1.259 (8)	118.9 (5)
030	C2C	010		124.5 (7)
C4C	C2C	010	1.521 (10)	116.6 (5)
CSC	C4C	C9C	1.3/6 (9)	120.0 (6)
COC	C4C	C2C	1 201 (10)	120.2 (6)
CSC	C4C	C1C	1.391 (10)	119.7 (5)
C7C	CSC	C4C	1.407 (12)	119.3 (7)
	C7C	C5C	1.342 (13)	121.0 (7)
		C7C	1.301 (11)	120.3 (8)
C4C	C	CRC	1 391 (11)	120.0 (6)
2.0	~~~	000		1200(0)

for the H atoms are from Stewart, Davidson & Simpson (1965). The linear absorption coefficient was calculated from values found in International Tables for X-ray Crystallography, (1974, Vol. IV, p. 55).* The figures were generated using SHELXTL-Plus (Sheldrick, 1987). Positional and thermal parameters for non-H atoms are listed in Table 1,

^{*} Tables of anisotropic thermal parameters, H-atom positional parameters, bond distances and angles involving the H atoms, hydrogen-bonding interactions, structure-factor amplitudes and a unit-cell packing diagram have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53606 (47 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

while the bond lengths and angles for the non-H atoms are listed in Table 2. The atom-labelling scheme is shown in Fig. 1 while a view showing the nearly D_{3h} symmetry of the complex is shown in Fig. 2.

Related literature. A review the chemical and physical properties of related triangular bridged structures has been reported (Cannon & White, 1988).

We are grateful to the National Institutes of Health (G. M. 36348) for financial support of this research. JLS also thanks the National Science Foundation for a Presidential Young Investigator Award (1986), the Alfred P. Sloan Foundation for a Research Fellowship (1989–1991), and the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Award (1988–1992).

References

- CANNON, R. D. & WHITE, R. P. (1988). Prog. Inorg. Chem. 36, 195–298.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324. Sessler, J. L., Hugdahl, J. D., Lynch, V. M. & Davis, B. E.
- (1990). Inorg. Chem. In the press. Sessler, J. L., Sibert, J. W. & Lynch, V. M. (1990). Inorg. Chem. 29, 4143–4146.
- SHELDRICK, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet R3m/V crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1991). C47, 869-870

The 1/2 Complex of Mercury(II) Trifluoroacetate and Pyridine N-Oxide

BY JOAN HALFPENNY* AND R. W. H. SMALL

The Chemistry Department, The University, Lancaster, England

(Received 21 June 1990; accepted 10 October 1990)

N-oxide)bis(trifluoroace-Abstract. Bis(pyridine tate)mercury(II), $[Hg(C_2F_3O_2)_2(C_5H_5NO)_2], M_r =$ 616.8, monoclinic, C2/c, a = 12.52 (1), b = 21.33 (2), $c = 7.62 (1) \text{ Å}, \ \beta = 107.9 (1)^{\circ}, \ V = 1936.4 \text{ Å}^3, \ Z = 4,$ $D_x = 2.12 \text{ g cm}^{-3}$, $\lambda(\text{Mo } K\alpha) = 0.7107 \text{ Å},$ $\mu =$ 77.06 cm^{-1} , F(000) = 1160.0, T = 290 K, R = 0.022for 887 unique observed reflexions. Distorted octahedral coordination around the Hg atom on a twofold axis with Hg-O 2.167 (6) Å to trifluoroacetate, Hg-O 2.447 (5) Å to pyridine oxide and Hg-O 2.548(5) Å to a further centrosymmetrically related pyridine oxide. Centrosymmetrically related Hg atoms are thus bridged along c by pyridine oxide. The CF₃ group shows disorder, occupying two alternative orientations.

Experimental. Crystals grown from an equimolar solution of mercury(II) trifluoroacetate and pyridine *N*-oxide in dichloromethane were acicular along c. Cell dimensions, initially from Weissenberg photographs [λ (Cu $K\alpha$) = 1.542 Å], refined from setting angles of 20 reflexions in the range 10 < 2 θ < 40° on STADI-2 two-circle diffractometer (graphite-monochromatized Mo $K\alpha$). This was also used for measurement of 952 unique intensities from a crystal

 $0.2 \times 0.09 \times 0.05$ mm for the layers hk0 to hk7, standard measured every 20 reflexions, < 5% intensity variation, h = -11 to 10, k = 0 to 20, max. $(\sin\theta)/\lambda = 1$ 0.55 Å^{-1} ; variable ω scan, $2\theta'$ fixed, stationary background count. Lp correction and absorption correction (point by point integration, max. and min. transmission factors 0.501, 0.271) using the programs of SHELX76 (Sheldrick, 1976). The same programs were also used in the structure determination involving 887 reflexions for which $I > 3\sigma(I)$. Hg-atom position and confirmation of space group from Patterson maps. Positions of non-H atoms were from ΔF map which indicated disorder of the CF₃ group with occupation of two alternative orientations. During initial least-squares refinement, based on F, two sets of F-atom positions with complementary site occupations were refined alternately, the minor set [F(4), F(5), F(6)] with site occupation 0.25 were subsequently fixed in positions with refineable isotropic vibrations. Refinement of: Hg, position and U_{ii} ; C, N, O and F(1), F(2), F(3), positions and U_{iso} ; H, common U_{iso} with calculated positions (C—H = 1.08 Å) gave R = 0.039. Refinement of anisotropic U_{ii} for C, N, O and F atoms reduced R to 0.022 and significantly improved the e.s.d.'s, the results quoted refer to this refinement. Interlayer scale factors were refined at an intermediate stage. Final $\Delta/\sigma < 0.04$, variations in final F map $+0.\overline{43}$ to -0.46 e Å⁻³. R

© 1991 International Union of Crystallography

^{*} Present address: Department of Chemistry and Physics, Nottingham Polytechnic, Nottingham NG11 8NS, England.

^{0108-2701/91/040869-02\$03.00}